Oscillatory property of higher order nonlinear difference equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oscillatory Properties of Fourth Order Nonlinear Difference Equations with Quasidifferences

In this paper we present the oscillation criterion for a class of fourth order nonlinear difference equations with quasidifferences.

متن کامل

Existence of Periodic Solutions for Higher-order Nonlinear Difference Equations

In this article, we study a higher-order nonlinear difference equation. By using critical point theory, we establish sufficient conditions for the existence of periodic solutions.

متن کامل

Forced oscillation of higher order nonlinear difference equations

This paper considers the oscillation problem for forced nonlinear difference equations of the form 0096-3 doi:10 * Co E-m Dxn þ qnf ðxn sÞ 1⁄4 en: We study three cases: qn P 0, qn < 0 and qn is oscillatory. No restriction assumed in known literatures is imposed on the forcing term en. 2006 Elsevier Inc. All rights reserved.

متن کامل

General Permanence Conditions for Nonlinear Difference Equations of Higher Order

w . m w . w . where f : 0, ` a 0, ` and the initial values x , . . . , x g 0, ` . 0 1ym Ž . In studying the global behavior of the solutions of Eq. 1 , we often need Ž . to establish that 1 is permanent, i.e., it has the property that every one of its solutions is eventually confined within a fixed compact interval regardless of the initial values chosen. Permanence is needed directly or indire...

متن کامل

Oscillation of Higher-order Delay Difference Equations

where {pi(n)} are sequences of nonnegative real numbers and not identically equal to zero, and ki is positive integer, i = 1,2, . . . , and is the first-order forward difference operator, xn = xn+1− xn, and xn = l−1( xn) for l ≥ 2. By a solution of (1.1) or inequality (1.2), we mean a nontrival real sequence {xn} satisfying (1.1) or inequality (1.2) for n ≥ 0. A solution {xn} is said to be osci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 1996

ISSN: 0898-1221

DOI: 10.1016/0898-1221(96)00076-4